Dog Appeasing Pheromone prevents the testosterone surge, and may reduce contact-dominance and active-submission behaviours after interventions in captive African wild dogs (Lycaon pictus).

F. Van den Berghe^{1,2}, M.C.J. Paris^{1,2,3}, Z. Sarnyai¹, R. Millar^{2,4}, A. Ganswindt⁵, A. Cozzi⁶, P. Pageat⁶ & D.B.B.P. Paris¹

¹College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia ²Institute for Breeding Rare and Endangered African Mammals, Edinburgh, UK ³Wageningen Livestock Research, Wageningen, The Netherlands ⁴Mammal Research Institute, University of Pretoria, Pretoria, South Africa ⁵Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, South Africa

⁶Institut de Recherche en Sémiochimie et Ethologie Appliquée, Apt, France

Introduction

African wild dogs (AWD; Lycaon pictus) have a complex hierarchical social structure that can lead to aggression, morbidity & mortality after temporary separation of individuals from the pack, or during new pack formations. We performed a placebo controlled double-blinded study to evaluate the effect of Dog Appeasing Pheromones (DAP) on faecal glucocorticoid (fGCM) & testosterone (fAM) metabolites, & behaviour in captive African wild dogs, after temporary pack separation, immobilisation & reintroduction.

Methods

Behavioural observations

- Non-contact & contact dominance behaviour
- Active & passive submission
- Aggressive behaviour
- Affiliative behaviour

Individual faecal sample collection & hormonal analysis

Cortisol-3-CMO (fGCM)

• T-3-CMO (fAM)

-3 -2 -1 0 +1 +2 +3 +4 +5 Days

Anaesthetic intervention for reproductive study

Blind Trial: Topical application of 10 ml:

Zoo	DAP	PLACEBO	Pack composition
BIN	Jul 2014 (n=3 ♂)	Sept 2014 (n=3 👌)	3 👌
TOP	May 2014 (n=3 ♂)	- 100 MARIE 11 10 10 10 10 10 10 10 10 10 10 10 10	3 💍
OKC		Sept 2014 (n=3 ♂)	3 ♂, 1 ♀
ABQ	Aug 2014 (n=3 ♂)	May 2014 (n=3 ♂)	3 ♂
BRK*	Aug 2014 (n=3 ♂)	Jun 2014 (n=2 ♂)	3 \circlearrowleft , in August 1 \circlearrowleft

BIN. Binder Park Zoo; TOP. Topeka Zoo; ABQ. Albuquerque BioPark Zoo; BRK. Brookfield Zoo; OKC. Oklahoma City Zoo. * Excluded for behaviour analysis day 1.

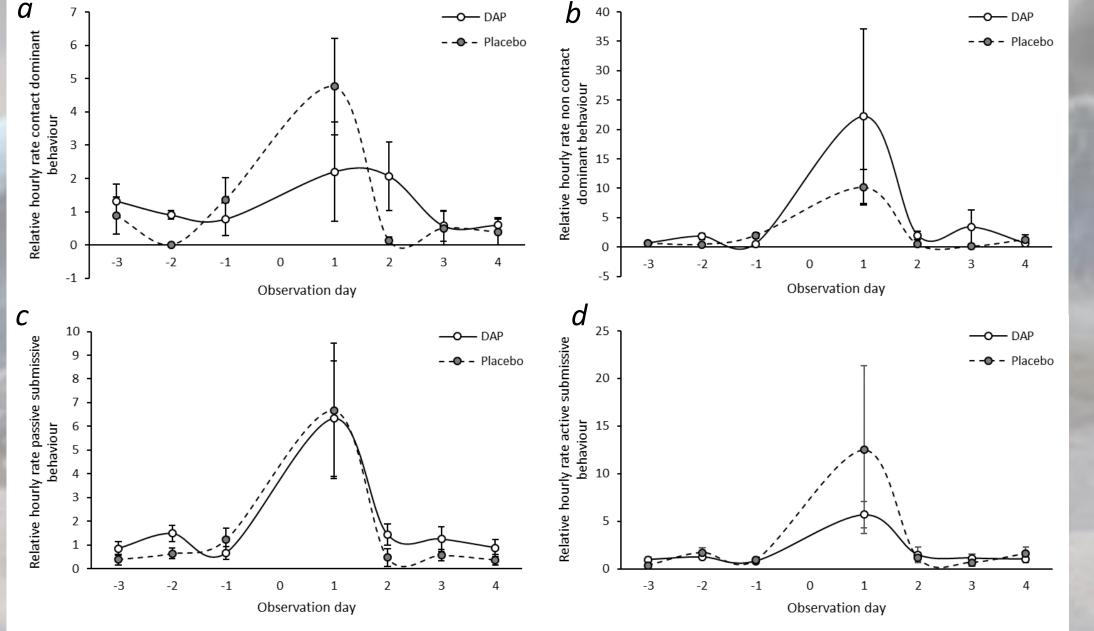
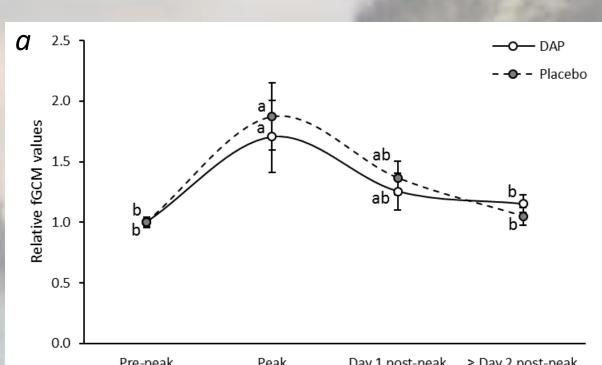



Figure 2. Relative hourly rates of contact (a) & non-contact (b) dominance behaviour, & passive (c) & active (d) submission.

Results

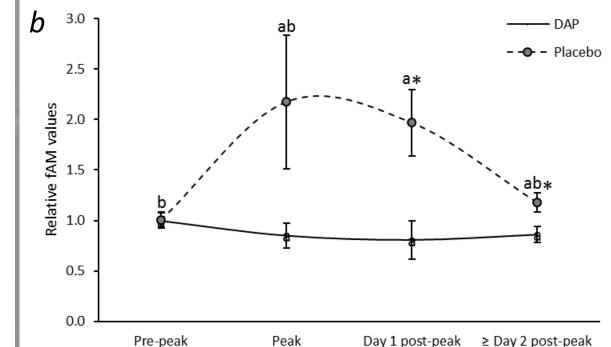


Figure 1. Relative fGCM (a) & fAM (b) values for DAP & placebo treated animals in samples collected before (pre-peak), & after (peak, day 1 post-peak, ≥ day 2 post-peak) immobilisation & pack reintroduction. Different letters indicate differences between time points. * indicates differences between treatments.

Faecal glucocorticoid metabolites

- Rise in placebo & DAP group (Fig. 1a).
- Ratio peak/pre-peak value > 1 in 63.6 % of DAP & 83.3 % of placebo treated animals (p=0.275). Ratio > 1.5 in 54.5 % of DAP and 75.0 % of placebo treated animals (p=0.278).

Faecal androgen metabolites

- Rise in placebo group, absent in DAP group (Fig. 1b).
- Ratio peak/pre-peak value > 1 in 27.3 % of DAP & 66.7 % of placebo treated animals (p=0.059). Ratio > 1.5 in 9.0 % of DAP & 50.0 % of placebo treated animals (p=0.045).

Behaviour

- During reintroduction, tendency towards higher rate of contact dominance behaviour in placebo treated packs (Fig. 2a) & higher rate of non-contact dominance behaviour in DAP treated packs (Fig. 2b).
- Tendency towards higher rate active submission in placebo treated packs (Fig. 2d).
- No differences in rates of affiliative or aggressive behaviour. Aggressive behaviour during reintroduction was absent in all packs.

Discussion-Conclusion

The absence of differences in fGCM in both treatment groups might be due to immobilisation-related stress. AWDs perceive DAP which is reflected in the absence of a testosterone increase after reintroduction. Together with a trend towards a lower rate of contact dominant behaviour, this could decrease the risk of aggression. However, to explore the behavioural differences further, more research is needed with (1) a higher number of packs; or (2) AWD specific appeasing pheromones.

Acknowledgements

We would like to thank Binder Park Zoo, Battle Creek, MI, USA; Topeka Zoo; Albuquerque BioPark Zoo; Albuquerque, NM, USA; Brookfield Zoo, Chicago, IL, USA; & Oklahoma City Zoo, Oklahoma City, OK, USA.